Slide Nine - a sliding block puzzle game tutorial

L) 1 ¥

= 3 L]

£

for App Inventor

Slide Nine is a timed (and move counted) sliding block puzzle using Any component Button
Text and Button Image blocks. The example app Slide Nine requires the user arrange eight
scrambled numerals in a pattern on an Android screen or to unscramble a picture puzzle.

The puzzle blocks on the Android screen appear to slide, touch a block adjacent to the empty
slot to trade places with the number or image block next to it. Not all Slide Nine puzzles are
solvable. Use the Solve button to give up when you have had enough (can not solve a
puzzle), then restart the puzzle. Restarting will probably generate a puzzle you can solve.
Switch between the numerical and picture puzzle types with the “gear works” menu button.
The button sends you to a “screen” (a ListPicker) where you can toggle between the
numerical and graphic puzzle options.

Lo | T | (T (5

Best Score so far-- 84676 in 01:24 Best Score so far-- 9000000000 00:00 min/s... Best Score so far-- 5000000000 00:00 min/s...

& O % O~ ? & OFER - ?
1 2

n . n . | .
- "
k 2 ™=y
¥y <o
¥ x
: £ o ik = '-.
R £.u8 1%

A 10:59:04 P 00:10 Easy a4 11:00:45 pm 0020
n--E-h-H oM 071:24 easy i 11:00:45 Pm U UL

04 pifficult

Numerical Puzzle Magic Easy Puzzle Magic Difficult Puzzle

Scramble the numbers with the triangle shaped start button, then rearrange them into
numerical order by “sliding” the blocks successively into the empty space. You would rather
unscramble a picture? Your choice.

All three Slide Nine puzzles are displayed on a single Al2 screen. Displays are changed by
hiding/showing layouts.

Program Development

| use the Al2 default object names to label objects in my Al2 projects. Sometimes the
sequence of objects is broken; you might find a Label1 and a Label3 but not a Label2 in the
final code. | decided not to use an object default name for the Slide Nine button ‘sliding’
objects in the coding of Slide Nine. Nine Buttons are named B1 to B9. | needed an
awareness of the spatial positions of the buttons and their Al labels to figure out the algorithm
to “move” the blocks. How a tile might “move” is restricted by the location of a button within a
Table Arrangement. Button B5 is placed in the center Table Layout cell. Button B5 requires
the most complex coding to determine what can slide into the space and where a block shown
in the button can move. The event handler code of the buttons in the four corners is the least
complicated. How each button event handler was coded is described below.

The game logic exists in eighteen Procedures; nine Procedures for the numeral display
puzzle, nine similar Procedures for the image puzzles. Other code blocks in the implements a
scoring system, orchestrates a shuffling of the “sliding tiles” or blocks, documents the
variables, determines what happens when the puzzle is “solved” and provides error control.

Procedures limit redundant code. This tutorial is an exercise to build a game puzzle; if you
want to “optimize” the app’s code further, there is still opportunity. Here is an example of what
could be done to further simplify Slide Nine (it was not code,perhaps a project for you):

set GEED - CSR) to | *
sot 15D AT to | -
sot CED) . A to [-
set GID A to |
set 5D AR to | -
set G A to | -
set G A o | -
sot GEED WD to | -

set EEED - to
set GEED - - . so this should be Image instead of Text

sat N image - B . = of componemt | select list itlem list +={ global buttonList -
set G5B - (G o | - - index | get (54D
LY B4 - M Image - RO o to I selectlistitem list | get EEEIENERIE N

set CERD . (GEERD to
set ZEED - LMEFEED to = Do It Result: (l.png =~
1 2.png 3.png 4.png

set 8l Image - JMONES : Oh no, 9a.png is 5.png 6.png 7.png
set GEED . GEEEd to | - - not in the List! Lp"g‘)b |

set (CEED - (MEFEED ic m global buttenimagelList - |

The Slide Nine code snippet on the left could be “simplified” using the Any component code
blocks on the right if one is VERY careful. The pitfalls of attempting the simplification are

A foreach (T7=1) from | [
to Ej
by |6
do set Button.
of component [select listitem list | get []GLEINNIGHINGTES
| LY number -

]

highlighted. Hint: 1) must fix the Text to Image for the red circled item, 2) when you eliminate
the set blocks you will replace on the left, you need to keep the green circled set B9./Imageto
9a.png blocks (or you will have issues). Can you find another issue? (Hint: there are only
eight items in the buttonimageList (there is no reference to B9 in that list). What else in the
clever simplify solution above will come back to hurt you? If you fix ALL the issues, the code
blocks on the right do what the code on the left does. Try to fix the incomplete example;
retain a copy of the code that does work. You will need a copy if you get confused.
Sometimes what “looks” messy, might be the best solution. Which code is more readable?
Which code is faster? ..and does it matter?

Are you going to build a 15 block puzzle referenced in the section on Algorithms below? The
implementation of the code on the right is the way to go.

Slide Nine (or the Al2 Slider Puzzle) is complicated code; the number of blocks might make a
novice developer dizzy. This tutorial is primarily the code at the aia source file link. It is not
practical to explain all the code blocks, a small book is needed to walk a novice coder through
building the app. Writing the tutorial took five times as long as the time required to code the
blocks. Really. The functions of the key blocks are explained below; for more insight into the
app, peruse the aia file and learn from the block construction.

Housekeeping Blocks
You need a place to store variables:

initialize global (C=2) to | (759
e el cheatButton 10
initialize global (L[rF-Jto | || create empty list o b uselmages JORD false - |

initialize: global initialize global (IF=EEIEREEEY to (10| ereate emply list

initialize global (=) o | () initialize global ([TCH= 5] to | 10| create empty list

g
.
a

initialize global (EEAl=to (. @

Game Algorithms

The basic game logic code blocks are placed in the Click event handlers of nine Buttons in a
3 x 3 Table Arrangement. Each ‘button’ event handler has a slightly different logic. Knowing

which buttons are displaying text adjacent to the button which has no text is the “secret” to
successfully writing code to “move” the blocks. The nine buttons are B1..B9. When a button
is touched, App Inventor searches for an adjacent Table Arrangement cell that contains a
button whose text field is empty. If it does not find an empty slot, the button touch does
nothing. If an empty slot is located adjacent to the touched button, the text from that button
(not the button) transfers to the button that has no text and receives the text from the touched
button.

When a slider puzzle is generated completely randomly, exactly 50% of the puzzles will be
insoluble. The Slide Nine puzzles are generated with Al2’s pseudo-random number generator
so expect unsolvable puzzles. You could program the app to allow only solvable puzzles
instead of using a random algorithm. | did not attempt to generate a list of solvable
distributions.

Each puzzle can be solved in many different ways. Some solutions require more ‘slides’ than
others. A move counter is included to keep track of the moves.

Slide Nine is a 3 x 3 puzzle. The original sliding puzzle invented in the 1800’s had 15 blocks
on a 4 x 4 grid, was mechanical and much more difficult to solve. You can program a 15
sliding block puzzle too using the techniques here; the larger puzzle just requires more logic
and blocks and more patience to code and debug.

A Little History

Noyes Chapman, a postmaster in Canastota, New York in 1874 invented the first mechanical
sliding puzzle. Students in the American School for the Deaf manufactured the puzzle and
sold the wooden puzzles in 1879 locally and in Boston, Massachusetts according to
Wikipedia. lronic App Inventor is maintained by MIT, located in Cambridge, Massachusetts, a
Boston “suburb.”

Block Movement

How do the blocks move? Or do buttons move? Or what? The Buttons never move their
positions within the Table Layout. The Button.Text changes in the number puzzle. The png
image varies as required (i.e. Button.Image changes) in the image puzzles. A significant part
of the block “moving” code is possible with the Any components Button.Text and
Button.Image blocks.

The blocks appear to move because numerical text on Buttons is swapped with the non-text
of the ‘empty’ button from the adjacent ‘empty’ button. Likewise, png images are swapped for
a blank image.

http://en.wikipedia.org/wiki/Canastota,_New_York
http://en.wikipedia.org/wiki/American_School_for_the_Deaf
http://en.wikipedia.org/wiki/Boston

Unshuffled Buttons Scrambled lower left corner empty Scrambled center empty

When the numerical puzzle is complete (the Unshuffled Buttons), the lower right corner of the
puzzle box is empty, it has no Text numbers. The 8 or the 6 can move into that position. The
5 or the 8 in the first scrambled image above (the one in the center) can ‘move’ into the empty
slot. When the center Table Arrangement cell is ‘empty’ (it is not really empty, the text of the
button is ‘empty’), four buttons adjacent to the empty cell display numerical Text, those
currently showing 2,5, 7 and 3..

The code blocks needed to determine if the 5 (in button B4) and 8 (in button B8) (the center
image) is in byNumbers . The numbers 5 and 8 are presently adjacent to an empty block
and will move the text from the touched button into the ‘empty’ block (B7 button). The code
blocks in the empty (B7) button and the adjacent buttons work together.

when [EZ&) Cick
do [_f =Y global Useimages -

[EIN) b7 Images
do v do [set (EERI=](k# to | Button.
of component Bl E7 - |

then cal LT N
—

C U N b7humbers -
—

then | set EEIIENEAR to || Bution
of component |
set Button. [Ehkd set Button.
of component of component
to | “EXTT " T T
set Button. set Button.
of component - of component
to to

call [EETTIED Play
S

then | set EETERI=1AN to | Bution. (EIES
of component |

set Button.

of component
to il Sa.png e to
set Button. set Button.
of component | [EEE) «of component
o 1 oot CEENEIRD
ol EETEED Pay

t1=¥ global moveCounter = 112} o "1 global moveCounter - e L4 global moveCounter - [EIRRY global moveCounter - g
. —

The code in button B7 keeps track of which puzzle is being solved, then selects either the
numerical or image puzzle procedures. In this case, a proceduresolves the button
relationships for the numerical puzzle (call b7Numbers). If this were an image puzzle the
logic would be provided by call b7Images.

There are nine puzzle buttons; the code in the Button.Click event is similar for all. The code
in the associated procedures is different for each button. All the key procedures follow the
form BUTTON_LABEL+Numbers or BUTTON_LABEL+Images.

Is the code images here difficult to read? ALL the code necessary is in the aia file. The
tutorial attempts to explain the methodology, you as a developer will fill the gaps by examining
the aia.

The empty center block of the puzzle grid shown below is adjacent to four buttons. A slightly
different algorithm called in each of the four button event handlers detects the center cell
button is empty and the central cell button code recognizes the adjacent blocks contain

1 2 6
il
Vv
5e} 7
.y
8 3 4
numeral text.

The code blocks that control the central cell of the Table Layout look like this:

st Buten. [0 TR0
of componert

™

set Bulbon. [ZTTTEN
of eoenponane

=

 call Flay

set Buton. [ETTE0
of comporeni
-]
set Buton. [ETTED et Buson. [T
of comporent | B iof Component
[] -]

ool [ECTTNI) Py

et Buiton. [T sef Bubon. EETEN
of compornent 85 of Ccomponent
L]
set Bulbon. [ZTTEN
of component
]

_call Fiay

The algorithms/procedures used with the numerals to swap text can not work with the puzzle
image puzzle. The image puzzle has no text to swap (i.e. the numbers shown on the Easy
image puzzle are part of the image, not button text). To put Magic together again,a second set
of procedures is used to track the image png (instead of tracking the text). The procedures
B5Images and B5Text are similar; one procedure uses the Any component Button.Image
block, the second procedure uses the Button.Text block. The procedures are otherwise
identical in structure.

The routines for the remaining tile buttons are shown in the aia file. Right click the block you
want to examine and select Expand Blocks on these collapsed blocks:

when B1 Cikckdoifgetg... to bSMumbers do set global ...

to b1 Images do set global T when BE Cick doifgetyg...
to b1Mumbers do set global ... to b&images do set global T...
when B2 Cickdoifgetg... to b6Mumbers do set global ...
to b2images do set global T_.. when B7 Click doifgetg...
to bZNumbers do set global .. to b7 Images do set global T
when B3 Cick doifgetg... to bYMumbers do set global ...
to b3images do set global T... when B8 Cickdoifgetg...
to b3Mumbers do set global ... to b8images do set global T...
when B4 Cickdoifgetg... to bEMumbers do set global ...
to b4 images do set global T... when BS Cick doifgetyg...
to b4Mumbers do set global ... to b9Buttons do set global ...

when BS Cickdoifgetg... to b9mages do set global T...

to bSIimages do set global T...

The scrambled Difficult image puzzle screen is shown below(Difficult because there are no
numerals attached to the eight images of pieces of Magic’s image). The numerals on the

Easy image puzzle screen (not shown here) help the user arrange the blocks to solve the

Best Score so far-- B4676 in 01:24

R OB ~ '

puzzle.

The Slide Nine Scoring System

We want the fastest time recorded by a user solved a puzzle so far as the score. The Best
Score is the shortest solving time or lowest value. The puzzle start time is captured (the
Clock.Now) when a user presses the start button from the MENU at the top of the screen.
Pressing the start button also sets other values. When the game is solved (yes, there is logic
to determine when the eight ‘movable’ numbers and images are in their correct solved
positions) the app records the time. As soon as the app “realizes” both the start and finish
times are available, the Duration (number of ms between the start and finish) is determined.
The raw score is the ms required used to solve the current puzzle (1000 ms equals one
second).

Slide Nine also records the number of moves (touches of Buttons) The app records even
touches to blocks that can not move ...you have to have some kind of penalty for trying the
impossible? The counted moves are not part of the score as currently coded. Make the
number of moves part of the score in your sliding puzzle app by dividing the ms by the moves
to provide a weighted score perhaps?

The Best Slide Nine score saves to a TinyDB. No leaderboard is necessary. The Best Score
is displayed the next time Slide Nine is loaded (provided you build the apk and load Slide Nine

on your device).

The user can reset the scoring using the “gear works” Menu button at any time.

Random Blocks

The arrangement of the “puzzle” pieces is different each time the game is played. The
random seed is reset when the app is loaded. All puzzles are scrambled by the Al2’s random
Math block algorithm We scramble only eight numerical blocks; the lower right corner is not
included in the scramble. About half of all puzzles should be solvable. Some puzzles are
impossible to solve. If the lower right corner (B9) is included in the scramble, the puzzle is
even more difficult. Include the empty block in the shuffle and make finding a solution for the
puzzle even more difficult.

How To Make the Images

The puzzle images are created from a 300 x 300 pixel png image sliced into nine pieces.

Sophisticated drawing programs can do this using a Slice tool; | use the Windows Paint image

- cut @ 7 >
I LY,
cor Y 4
aste elect || [Brushe
o o ota -

editor and cut out 100 x 100 images.

The images for the Difficult image are named 1.png ... 8.png and 9a.png; the images
displayed for the Easy image are named 11.png...88.png and 9a.png.

EREEFPFRE&SC

aga

1.png 2.png 3.png 4.png .png 7.png 8.png
N EFE P i ¥
g L-\. B
11.png 22.png 33.png 44.png 55.png 66.png F7.png 33.png

The ninth image is a blank 100 x 100 png. The image of Magic in this tutorial is the same for
both Easy and Difficult. A numeral is added to the Easy image set using the image editor.
The numbered blocks makes it easier to solve the graphic slider puzzle.

When you build the app, substitute any images you like for Magic (he won’'t mind). The
images must correspond to the size of the objects in the Table Arrangement. The Table cells

are populated with 100 x 100 pixel images in Buttons. Slice a master 300 x 300 pixel image
into nine pieces, discarding the ninth piece. Place the images in the Buttons, not in the Layout
cells themselves.

Important Facts

This tutorial and the app are copyrighted. Please do not slightly modify this tutorial and claim
it as your own or post it on Google Play. Have fun with the puzzle and images for personal
use, use the algorithms and ideas in you own app and enjoy coding.

The image of the Cardigan Corgi Magic is used with permission of his owners.

This tutorial, images and Slide Nine are Copyright (C) 2015 by SJG.

