... an Al2 Tile matching game and

tutorial

Tile-matching games are a type of puzzle where the player manipulates tiles to make them
disappear according to a matching criterion. Find the identical dogs on two successive
screen touches of the question mark buttons in Dog Gone! and make the dogs disappear
(dogs gone) with this app. When all the dogs and other images are hidden, the app provides a
reward and a score. Lowest score wins. How fast can you hide all the dogs and symbols?
Without peeking?

This tutorial uses the Advanced Al2 Any Component blocks, Procedures, Clocks, Lists,
Sound, Notifier and Layouts. The app uses a single screen. An aia template is provided
containing the required resources (as well as a finished app aia source to use to compare
your results).

The game does not start with App Inventor; it starts with an idea. Most of the work building

Dog Gone! involves gathering and making the required resources which include the images
for the “tiles,” the button icons and making the images the right “size.” It took longer to make
the tile images and write the tutorial than to code the app.

Lo | CEEEr i o | CEEETT O i

Tile Match Tile Match

® o

[pusk [snon J rice I shur B s J o EjcD 3 e B

Start Screen Options Screen Shuffled Tiles to Match

[N 5554:<build> [N 5554:<build>

45 seconds

Game in Progress Completed Matched Tiles

The Parts

Some of the parts needed for the app require you to design some icons with a program like
Paint on Windows. The game uses ten tiles. You need ten png or jpg images of the correct
dimensions. The example app uses tiles that are 59 pixels wide x 59 pixels high. Why? The
Table Layout the app is designed around will occupy a width of 300 pixels by design (most
Android phones have screens that are 3 inches and are 320 x 480 pixels). 5 x 59 equals 295
pixels, enough to fill the Table layout. The icons you design (or get from the Internet) might
have other dimensions; you might need a different way to lay out the matching tiles.

A 5 x 4 grid of tiles is “just about right” for this game (five columns; four rows). Use the Table

Layout with four rows and five columns. Place a button in each Table Layout; an image goes

in each button. Populating the Table Layout buttons requires only ten images. Each image is
repeated in the tile grouping.

All 20 tiles hidden All 20 tiles shuffled and shown All 20 titles ‘found’ and “hidden”

The game option buttons are placed in a Horizontal Layout and hidden (Visibility of the layout
control is set to false). When the app is running, it appears as shown here..

When the Options button is pressed, the users has
choices to:

1) Peek momentarily at all the images (about 72 second (500 ms) as coded).

2) Show the tiles

3) Hide the tiles .
4) Shuffle the tiles & ""

5) reSet the game

6) Toggle the game clock on/off m ——

Press the Option button a second time to hide the options.

Make Some Tile Images

The tutorial provides ALL the images required. If you want to personalize the app tiles, it is
not hard to do. You replace ten of the existing tiles that are currently named
dog1.png,doggreeni.png,dog1.png,dogorange1.png,Nickel.jpg,Magic3.jpg,weather2.png,aDia
mondGreenSolid.png,aOrangeTriangleSolid.png,aStarRed.png,aDiamondBlueSolid.png .
These images could be named image1, image2, etc. and would be generic.

3 Ly CC

Shapes Colors

SN/ OOO&A | FFoutiner | — i D [
NOOOD AL - mm- | = =
| (R = |ﬂlnf nznr DD

5

< E
Copy Resize NS Clipboard Image
Paste Select y Q —

o rotate - || P 21Q D4 dnE s Clipboard
Clipboard Image Tools

qo o - T

Brushes

You might use Windows Paint to create the tile images. Here is a way to produce some
simple, easily recognizable shapes to use as the game’s matching tiles with Paint. Open
Paint. Using the icon in the upper left corner of the app’s window, select New. Then resize
the white default drawing surface. Click Resize (or drag the small boxes) to resize the drawing
surface. Using the following method allows you to specify the width and height pixels. When
the window opens, check Pixels. See step #1 above to see how. The tutorial example image
above demonstrates how you change the 64 to 59 and the 59 to 59. WAIT. Before you do
that, un-check the Maintain aspect ratio box to allow both dimensions to set to 59 pixels.
When both Horizontal and Vertical are set to 59 (step #2) go to step #3 and click OK. Your
drawing surface now is 59 x 59 pixels in size. Select a color to draw with a right click (step
#4), this places the selected color in the box at step #5. This is your drawing color. Select a
drawing object from the numerous shapes at #6 and drag the object (in this case a star) and
drop it at the white drawing surface at the location marked step #7. You can resize the
object to fill the entire drawing surface or only part by using the small expansion blocks or
move it to the center of the drawing surface (step #8). This procedure produces a nice
colorful star on a white background. The tile can be more colorful. Select a different color
(step #9), now find the color-fill tool (step #10). Drag the tool to the drawing surface. Left
click when the pouring spout is on the white area and the white area will be filled with the new
color - step #11 (or click on the star object and change its color). Constructing simples tiles
shown here is as simple as it gets with Paint. If you have graphics skills you can use more
features to create some exciting images or change to a more sophisticated drawing
application to provide shading, more colors, transparency etc. Now, return to the Paint menu
button (the upper left corner of the screen) and select Save as and save the image to your
desktop.

Shrink an existing photo to 59 x 59 pixels (yes, you can use Paint to do that) and the photo
png or jpg image can be used as a tile image too in your app. Ten images are required. The

question mark image and the Android image (used to hide the dogs and things) are provided
in the resources on the template aia.

Build the Game

The tutorial uses some advanced techniques. If you are a beginner, proceed slowly, save
your work periodically after testing as an aia source file or save using Projects>Save project
as.. . Experts should save too. This is an Expert tutorial, not because it is difficult, but
because limited instructions are provided.

The design screen uses Vertical, Horizontal and Table layouts. Your game does not have to
look like the example. The template does provide the basic buttons. You can use your own
layout instead as long a you use a five x four Table Layout for the tile buttons.

Where to start coding? This tutorial does not lead you by the hand. | would start coding all
the required buttons, then the procedures and clocks. The template has the buttons but if you
are adventurous, you can delete all but the table layout and just use the resources provided
instead. Sometimes you will need to code a procedure prior to placing all the required blocks
in a button event handler. This is a bit haphazard but necessary to avoid a LOT of
instructions and text in the tutorial. After all, you are getting a fully fleshed-out aia with the
tutorial if you need further explanation.

Programing style

Some programmers relabel components as to function; for example, Button1 to btnSTART. |
do not do that. Buttons, labels etc. are labeled sequentially. Some programming classes
insist that objects be renamed; | see renaming as an unnecessary activity and an added
complication. Is it easier to remember Button1 or btinSTART and follow someone elses
programming style with all the associated typing errors someone is apt to make will recoding
from block images? Writing this tutorial took three times as long as developing the code.

Designer Screen

Here is an image of the Dog Gone! Designer screen:

Viewer Components Properties Components Components

= Button20 - CIELEL0E "
Display hidden components in Viewer =] Screent Screeni r
Label3 Sautton21 Labels
2L abel .
AboutScreen B suttonz2 =JButton30
Deg Gone! 9 HHorizontalArrangemen - - N
4 = Button23 Label
e VerticalArrangemer | a a -~
AlignHorizontal puttonza orizontalArrangemen
B G TableArrangeme!
Center ¥ Beuttonzs A= Button32
e m— O 11001
Button7
Button? AlignVertical ~=Button26
Top v o 7 = Button8

== Button3 "= Button28

BackgroundColor
s Button31
[none

= Button5 Al apgi == Button17
= Button6 Backgeseimage Hogawet T 2nocss == Buttond
bluz o
Button10 T = Button14
TRY AGAIN — pentTation AlLabels

== Button29
o Defa v A
ﬂl‘__' % " g e HorizontalAmrangemen A Notifert
g . ——

\

+5
{2 Clockl

y Elear AL aels clocke
Button19 ,_‘:J) Sound!
Hsutton20

== Button30

= OpenScreenAnimation e
= © oo
»
Rename Delete ScreenOrientation

Unspecified ¥

Non-visible components
A B ¥ @ B Media serolisle

Confused? Refer to the completed aia. Some Object settings are assigned in the Designer
and not in the blocks so the template is handy. If things are not working as expected as you
code, please check the settings in the Designer. All the buttons and labels in the app are not
cross referenced in the above diagram.

Resources (Media)
The following resources are included in both aia files available with this tutorial; the resources

include two sound files and all the button images. Replace these examples with your own tile
blocks and sounds.

Media

Magic3.jpg
Mickel.jpg
Question.png
abiamond...Solid.png
aDiamondGreen.png
aDiamond...Solid. png
a0rangeT...Solid.png
asStarRed.png
blue.png
dogl.png
doggreenl.png
dogorangel.png
exit2 png
info.png
logol._png
weather2 png
Match.mp3
Win.mp3

Upload File ...

The Blocks

Lots of Blocks. Lots of Blocks so to learn from the tutorial you have to try to follow the
programming logic. | show and explain why several procedures and some of the critical
blocks are used but assume you understand the programming logic.

Global Variables

initialize global (55" F=Jto | |3| create empty list

initialize global | Ito | 121 create empty list
initialize global | Ito | 121 create empty list

initialize global | | to |21 create empty list

initialize global | | to |21 create empty list

' initialize global |
initialize global |
initialize global |
initialize global |
initialize global |

Buttons

The game tiles are buttons with images placed in a Table Layout. Are the buttons labeled in
logical order? No. The game tile buttons are: Buttons 1 through 6 AND Buttons 10 through
13 AND Buttons 18 through 27 (which, in a way shows how the app was developed..in parts).
| could have relabeled all the buttons: disappointed?, then relabel them.

ALL twenty of the Table Layout buttons have the same structure shown here:

when Click when [E[EHIES Click

1 TN buttonSelected -
Button | (ZNIEININS

o0 W W buttonSelected! -
Button Button10 -

. — [—

You need 20 of these buttons as indicated above; Buttons 1 through 6 AND Buttons 10
through 13 AND Buttons 18 through 27. Notice, the Button referenced in the call
buttonSelected1 procedure changes for each button. The Button1 structure is replicated
twenty times. Hint: Create all the buttons in the Designer, then in the Blocks editor duplicate
Button1 twenty times changing its caption to the required buttons using the caret to the right
of “Button1.” Also change the green button to the same name as the Button.

Here are more Buttons:

when [EViERIEES Click when Click when [EIEGETRES Click =N Button17 - eI
close screen do cal E7CENVED do call [EEE donl o f Clock1 - | TimerEnabled -
L -

- then set .
when ([EELVEE] Click when ETTTEED Click =1 global finishTime - KM 0]
TN ShufleList - ' =

TR global buttonimages - ol (A hidelmages -

when _Click
-0 @ i HorzontalArrangementi - | Visible - when ([EITEIGE Click
then set . L1 i) buttonComponent | - - (BEFET global listbuttonComponents -
do set Button.
of component | get

to

when Click
do set . to | IE)
(s~ - buttonComponent ||~ (BEET global listbuttonComponents - ||
do set Button.
of component | get
to select list item list (71 gel
index | indexin list thing | get

list € . - global listbuttonComponents - @

Button8 is the “Hide” button; it “hides” all the tiles behind question marks.
Button13 is the “Show” button; it displays all the tiles.

Button16 is the “Quit” button. It is used to terminate the app gracefully.
Button17 is the “T.Clock” button; it toggles the game timer clock off and on.
Button28 is the “Shuffle” button (to force a shuffle).

Button30 is the “Options” button.

Button31 is the “reSe”t button used to restart the game.

Button32 is the “Peek” button.

when (TGS Click
S S buttonComponent 11l
do set Button.

of component | get

to select list item list

Button7 is the “Show” button (in the Options). It will show all the tile images.

Miscellaneous Controls

when _BackPressed when Initialize

when _ErrorOccurred

~component functionName | errorNumber ~ message

Backpressed, empty as it is of a “puzzle piece,” prevents the user from accidentally pressing
the Android device’s back button and prematurely shutting down the game. This could be
used for other functions should you chose to modify the app.

Screen1.Initialize contains the reSet procedure (which is the game starting condition). The
reSet (discussed below) shuffles the tiles and starts (or restarts) the game.

The ErrorOccurred block is dormant at the moment and can be use to debug the app if
necessary.

Clocks:

when . .Timer when _Timer
do i o i =1 global clockRunning - do set .
L= R global finishTime - KERESEINEESY (/o finishTime - G call

to (| [0l join | get set

Three Clock objects are used. All three Clock.Timers are used only occasionally (none of the
timers run consistently). Clock1 is the game timer elapsed time. Clock2 resets after an
unsuccessful tile match attempt (or the user can use the button to elicit the change more
rapidly). Clock3 is set off within the Peek button event handler; the procedure hides the
images and turns itself off.

Procedures:
The buttonSelected1 procedure

This procedure might be termed the MASTER procedure for the game. Most of the decisions
are made here using the Logic controls and IF..then blocks.

O TDI-r onSe ai.

SN giobal clockRunning - LAl trus -
set . (L true - |
- suton. (20 [ACS
of component | get [ETGIED
set Button.

of component | get
to select list itemn list

lobal istbuttonCo

set FELe I EnnEEs to | select ist tem list (3 -1 global HiddenList -
index | index in list thing = get [ETIEIED

to 0 selectistiem st | (7 get PRI
indexx | index infist thing = get [ETiEED

set [EEITEHRGTEE) to | select list item list
index
list

to select ist item list BN -1 global Hiddenlist -
index | indexinlist thing | get [ETE0ED

[Cabell - W Text]| - - [Tbell - W Toxi

i | isinkst?thing | ESIE . IG5
=Y olobal HicdenLst - |

to select st item list B -1 global Hiddenlist
index | indexinlist thing & get

izt B -8 global listbuttonComponents -

[Labelt -] Text -} [Cabei2 - J Text -
AT I Labeit - Y Text -]
~ B2 global HigdenLst -
reph;ce istitem fist get
index | index in list thing | (EIZIED - LR
~ ST giobal HiddenList -
replacement - -
replace list tem st | get
index |’ index in list thing | [ELEEED - SRR
= ™ T giobal HigdenLst -

replacement = "

18 in list? thing | [ERETED - ETR
st | (7 get BEE
then evaluate but ignore result = [~
S

else | |0/ addiems tolist st | get iC Rt L R
K Capert - Texi -]
length of ist list BN -4 global Foundltlist - i = - I 10 |
to NETH

then cal
cal ([EGEEES Showhlert
notice | * .
to

(Cobert WTert < {tabee BT Y\ MOTr N Tor] - R Rl i oot W T] - M R

There are 131 blocks in this procedure. It is called by the buttons in the Table Layout and
executes when a users touches a game tile (any of the tiles labeled 1-20 on the Designer
screen). The procedure checks for the status of many of the app’s components and allows the
app to determine what to do after a button touch.

The reSet procedure. The procedure has 51 blocks.

G et
P giobai fnishTime - L0
Py Clock2 - J Tmerinterval - J0)
Y Clock - W Tmerenabled - JoRG | fohse

_
P Clock 1 - J] Timertnabled - o ghg. felse
set § Title - ISR Dog Gone! Jy

—
P Labeks - Visible - IR f2fsc
P Horzontalarrangement 1 - I visible - Relky | false
set EEERED - QD to |
set : to [* png Iy
random zet zeed to | cal [EEIEE) (Gethiliz

instant | call MNow

set (ELCIED EEER o | "0
set : to ["
LT 1 global buttonimages - RUOMEE - 18000 VR SiI dog 1 _png, doggreent png,dog 1 .png,d
call

L S globa
set PREENT RNk to | st from cev row text | ° Question. png Question png, Questio
£1=1 global FoundList - §i] 'II:qrjth list [=4 globa :
P global HiddenList - SN0 8 ~SIMF=1 giobal buttonimages -
call
e item
buttonText -

global listbuttenComponents -

Text -
item -

cal
| —

The reSet procedure is used when Screen1 is initialized and to start a new game following
completion of each tile matching. Use the Options button in the game to find the reSet button
during gameplay.

The text in the two cut-off Text blocks shown in the image is as follows:
dog1.png,doggreeni.png,dog1.png,dogorange.png,doggreeni.png,dogorange.png,Nickel.jpg,Magic3.jpg,Nickel.jp
g,Magic3.jpg,weather2.png,aDiamondGreenSolid.png,weather2.png,aDiamondGreenSolid.png,aOrangeTriangleSolid
.png,aStarRed.png,aOrangeTriangleSolid.png,aStarRed.png,aDiamondBlueSolid.png,aDiamondBlueSolid.png

and

Question.png,Question.png,Question.png,Question.png,Question.png,Question.png,Question.png,Question.png,Que
stion.png,Question.png,Question.png,Question.png,Question.png,Question.png,Question.png,Question.png,Question
.png,Question.png,Question.png,Question.png

Yes, there are 10 instances of Question.png in the Text control; these are all the same image.
Copy and paste both of these “strings” into the Text box.

What some of the blocks do in this procedure:

1) random set seed ensures that each puzzle is unique.

2) set Clock2.TimerInterval to 10000 is the interval the screen refreshes after a users
selects two un-matching tiles.

3) The Screen1 background image is the blue.jpg image (included in resources).

4) ShuffleList is a procedure described here by Sajal
http://www.imagnity.com/tutorials/app-inventor/shuffle-list-unique-random-numbers/ .
Described is a Fisher - Yates shuffle algorithm (
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle) converted to Al2
blocks by Sajal as is the Swap procedure. You need both these procedures described
below.

5) The ‘hidden’ blocks provide the developer to display the button text on the Table
Layout buttons.

The hidelmages and buttonText Procedures
The hidelmages procedure “hides” all the images “behind” a series of question mark images.

The buttonText Procedure clears the text when executed.

http://www.google.com/url?q=http%3A%2F%2Fwww.imagnity.com%2Ftutorials%2Fapp-inventor%2Fshuffle-list-unique-random-numbers%2F&sa=D&sntz=1&usg=AFQjCNGc2F_JpeT5uUivRoMM20YRH15_9g
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFisher%25E2%2580%2593Yates_shuffle&sa=D&sntz=1&usg=AFQjCNFqBwBnkrOQnvN90Tj5tF1KSOV7PQ

do fr;ir each |in list =& global listbuttonComponents -
do set Bution.

of component + =8 buttonComponent -

set Button.

of component [+ =8 buttonComponent -

BRCY buttonText |)
do | set LIRS to | " @

The Shuffle Procedures

to [heList]

do | for each () from .
to | lengthoflist list | get

by

do | |3/ initialize local ([(F1E55) to

random integer from | [1)
to length of list list | get ((EIEED

in | call
- Y Suiap W it W ncex J repiace

index do | 0| initialize local [Enn 1) to | selectlistitem list | get (EX3
replace | get [EUEECRS _ . index || get (IEEXD
in | replace list item list
index

replacement

get

réplace list tem list
index | get
replacement =1 tempValue -

These two procedures are needed to implement the Fisher-Yates shuffle algorithm converted
to Al2 blocks by Sajal (
http://www.imagnity.com/tutorials/app-inventor/shuffle-list-uniqgue-random-numbers/). These
blocks here are slightly modified from the blocks he introduced.

The tryAGAIN procedure:

= tryAGAIN
do set . to PREESN

71 buttonGomponent | || - (ML -1 global listbuttonComponents -

do set Button.
e T BuiionComponent -

to Questio !
L N—

call
=~ buttonComponent || - [#{:=1 global listbuttonComponents -
do ||| if select list item list | get A EIED
index | index in list thing | get (LTI
[(0@ -1 global listbuttonComponents

then set Button.
of component [get
to select list tem list | get RIELRERGEEINEES
index | indexin list thing | get
o (L@ - =f global listbuttonComponents ~

http://www.google.com/url?q=http%3A%2F%2Fwww.imagnity.com%2Ftutorials%2Fapp-inventor%2Fshuffle-list-unique-random-numbers%2F&sa=D&sntz=1&usg=AFQjCNGc2F_JpeT5uUivRoMM20YRH15_9g

The celebrateMatch and celebrateFinish Procedures:

The “celebrate” procedures play the two included sound files when they are needed.

=) 57 celebratelatch

Clockt - J Tmertnabied - Jogk. faise -
By Sound - I Source - JCINELWVn-mp3)
call Play

The showlmages Procedure:

GOl T global listbuttonComponents - Sl (&0 =171 0l Button1 - |

Ld
T

w

Button11 -

ns
3
5

jus] | fww) | fus) | fue] | Jus)
46 H E B
N BN

This list creation procedure is used several times within the app. The green button blocks are
the names of all the buttons in the Table Layout used to display the matching tiles. Find each
block are in the Blocks pop-up for a Button and are the last block displayed.

Other Procedures:

B ¢1 removelmages |
do (ol is in list? thing | (EEIED . (5559

then réplace [NS SIEG =8 global HiddenList -

(o] to
do [remove list item list \+ =1 global FoundList -

= (82T global HiddenList - fie > ¢ Label1 - M Text - |

L

(o] to
[+1s] Izl add items to list list \+ =1 global HiddenList -
(1= I | abell - B

index | indexin list thing | [EEIES .
list \+ =1 global HiddenList -

replacement

L

replace listitem list | | get I REEAE e
index | indexin list thing | [EEIES .
list \+ =1 global HiddenList -

replacement

These procedures are not used at the moment are included because they might be useful
when a developer makes modifications.

How to play Dog Gone!

1)
2)
3)
4)
9)
6)

7)

Select a question marked tile at random.

Select a second; hope for a match.

If a match of two identical tiles, the tiles are hidden.

Match another pair of tiles if you can, then another.

When all the tiles are matched, you win!

All done? Either quit or from Options, select reSet and the app will reset and allow
you to play again. The next time you play, the tiles will be shuffled and you have a
fresh playing screen. You play against the clock; try to better your time.

Tired of guessing? Before the game starts, go to Options, then select Peek and you
get to see the screen for a brief moment. Does knowing the location of the tiles
improve your score?

Variations of the app you can code

While Dog Gone! is a complete app, there are certainly many enhancements, you as a
developer can add:

1)

Build the game with more than with 10 images available, but keep the number of tile
“buttons” constant. Randomly select the images that will be shown for each game from
your image list (but always limit the number to ten that will be used in any one game
play) when you load the image list. To do this, you will have to name the images
something like image1, image2 etc. in a generic way and provide the appropriate
names in the image list.

2) Automatically display the Peek feature at the beginning of the game start. Users
“know” where the images are as opposed to the default of not knowing anything about
the tiles. Perhaps allow both options?

3) Add a “Leader Board” with scores. You will need a TinyDB and additional code blocks
to make the score board persistent and to add new records. There are some
suggestion about how to do this in this link:
https://groups.google.com/forum/#!searchin/mitappinventortest/high$20score/mitappin
ventortest/ SNEpOJhBo4/wqo9f5EjJzoJ .

4) Increase the size of the matching tile Table Layout. You need one tile image for each
matched pair (each image is used twice) and enough images to fill the Layout with
buttons/images and fill each row/column fully.

5) Use a sound file and write code to respond with a “raspberry” when selected tiles are
mis-matched.

6) Keep a count of the tile match tries and total the successful and unsuccessful matches
and make them part of the high score.

7) Certainly you have more ideas for improvement?

If you make interesting changes, you might publish your pertinent code blocks on the Al2
Forum (https://groups.google.com/forum/#!forum/mitappinventortest) with a title like Dog
Gone! Modifications - Tips and Tricks.

Is there a source file? Download Source Code

Download the source code to your computer, then open App Inventor 2, click Projects, choose
Import project (.aia) from my computer..., and select the source code you just downloaded.
There are two aia files: DogGone.aia (the complete project) and DogGone_Template.aia
(loads all the resources; you do all the coding). The links to the Google folder with the aia’s
are shown on the main tutorial blog page.

Coding Advice

1) Android and App Inventor are text case sensitive. When coding names of objects,
images and things, remember blue.png is NOT Blue.png or blue.jpg for example.

2) Save your work frequently. Either create a new aia or (very easily) Projects>Save
project as saves a copy to the MIT server.

3) Stop coding when you are tired. OK, don’t and see what happens.

4) You do not have to replicate the Designer screen. You do need to reproduce the Table
Layout and buttons with images.

5) Please do not copy this app and attempt to sell it on Google Play, THIS tutorial is
copyrighted, if you want something for Google Play use the principles you learned and
code your own app.

6) For your own personal use, have fun with Dog Gone! It is free for personal use.

7) Have fun.

https://groups.google.com/forum/#!searchin/mitappinventortest/high$20score/mitappinventortest/_SNEp0JhBo4/wqo9f5EjJzoJ
https://groups.google.com/forum/#!searchin/mitappinventortest/high$20score/mitappinventortest/_SNEp0JhBo4/wqo9f5EjJzoJ
https://groups.google.com/forum/#!forum/mitappinventortest

Credits

The Question.png is courtesy Wikipedia. The dogs images are courtesy Magic and Nikel and
their owners. The logo1.png (the lurking Android) is courtesy of Google. App Inventor 2 is
courtesy MIT. This tutorial is written by Stephen Gradijan, January 2015; Copyright 2015 by
SteveJG

Tutorial Version:

e App Inventor 2
Tutorial Difficulty:

e Intermediate-Advanced-Expert
Tutorial Type: Game

